High Tunstall College of Science Curriculum Intent

Topic: Principles of Computer Science
Topic 2: Data
Data representation

		Progress	
Key Ideas	R		A
I can convert between signed denary numbers and two's complement binary numbers	G		
I can determine the range of values that can be represented in two's complement by a binary number of a given length			
I can apply logical left and right shifts to binary integers			
I can use logical binary shifts to multiply and divide unsigned binary integers by powers of 2			
I can explain why a number may be less precise after a binary shift right has been applied			
I can apply arithmetic left and right shifts to signed binary numbers			
I can describe how an arithmetic right shift differs from a logical right shift			
I can define what is meant by the term 'hexadecimal'			
I can explain why hexadecimal notation is used			
I can convert between hexadecimal and binary			
I can define what is meant by the term 'character set'			
I can describe how characters are represented in 7-bit ASCII			
I can derive the ASCII code for one character when given the code for another			
I can outline the shortcomings of ASCII and understand how encoding systems that use more bits overcome them			

Lesson	Learning Focus	Assessment	Key words
$\mathbf{1}$	convert between signed denary numbers and two's complement binary numbers determine the range of values that can be represented in two's complement by a binary number of a given length	Evidence in Teams End of topic assessment	Addition, Binary, Convert, Denary, Most Significant Bit (MSB), Two's complement, Value
$\mathbf{2}$	apply logical left and right shifts to binary integers use logical binary shifts to multiply and divide unsigned binary integers by powers of 2 explain why a number may be less precise after a binary shift right has been applied	Evidence in Teams End of topic assessment	Arithmetic shift, Binary, Division, Integer, Least Significant Bit (LSB), Left \& Right, Logical shift,
Most Significant Bit (MSB),			

