High Tunstall College of Science Curriculum Intent

Subject: Physics Year: 10

Waves and Space

Торіс	Physics Thread Key ideas	Progress		
		R	Α	G
Waves and space	I can compare transverse and longitudinal waves and calculate using formula			
	I can calculate wave speed of a wave in a liquid and a solid			
	I can order and identify the uses and dangers of electromagnetic waves.			
	I can explain how electromagnetic waves are reflected and refracted.			
	I can investigate reflection and refraction of light rays.			
	I can construct ray diagrams for different types of lens.			
	I can explain how temperature is effected by the rate of absorption and emission of infrared radiation.			
	I can explain how humans hear and analyse how loudness and pitch are linked to wave features.			
	I can name and order the stages of a stars life cycle, explaining why each stage occurs.		1	

Lesson	Learning Focus	Assessment	Key Words	
1	Understanding wave fea- tures and calculating wave speed.	Comparing transverse and longitudinal waves, and cal- culating using formula Formative questioning, exam questions and summative tests.	Frequency, Wavelength, amplitude, wave speed., transverse, longitudinal, time period	
2	Required practical investi- gating wave speed in liq- uids and solids.	Observation and formative assessment of students com- pleting a safe and accurate practical. Exam questions .	Frequency, Wavelength, amplitude, wave speed.	
3	Exploring the electromag- netic spectrum.	Ordering and identifying uses and dangers of electro- magnetic waves. Formative questioning, exam questions and summative tests.	Electromagnetic, wave- length, radiation, frequen- cy, wave speed, sievert	
4	Reflection and refraction of electromagnetic waves.	Drawing and explaining reflection and refraction dia- grams. Formative questioning, exam questions and sum- mative tests.	Reflection, refraction, nor- mal, incidence.	
5	Required practical investi- gating refraction and re- flection of light rays in different materials	Observation and formative assessment of students completing a safe and accurate practical. Exam questions .	Reflection, refraction, nor- mal, angle of incidence.	
6	Constructing ray dia- grams of different types of lens.	Formative questioning, exam questions and summative tests.	Converge, diverge, optical centre, principle axis, magnification.	
7	Exploring perfect black bodies.	Explaining how temperature is effected by the rate of absorption and emission of infrared radiation. Formative questioning, exam questions and summative tests.	Absorption, emission, in- frared, radiation, black body, thermoregulation.	
8	Understanding sound as a longitudinal waves.	Explaining human hearing and analysing how loudness and pitch are linked to eave features. Formative ques- tioning, exam questions and summative tests.	Longitudinal, pitch, loud- ness, vibration, vibration.	
9	Exploring a stars life cy- cle.	Name and order the stages of a stars life cycle explain- ing why each stage occurs. Formative questioning, exam questions and summative tests.	Nebula, proto-star, red giant, supernova, neutron star, black hole.	